Coupled in vitro import of U snRNPs and SMN, the spinal muscular atrophy protein.
نویسندگان
چکیده
Cytoplasmic assembly of Sm-class small nuclear ribonucleoproteins (snRNPs) is a central process in eukaryotic gene expression. A large macromolecular complex containing the survival of motor neurons (SMN) protein is required for proper snRNP assembly in vivo. Defects in SMN function lead to a human neuromuscular disorder, spinal muscular atrophy (SMA). SMN protein localizes to both nuclear and cytoplasmic compartments, and a reduction in nuclear levels of SMN is correlated with the disease. The mechanism of SMN nuclear import, however, is unknown. Using digitonin-permeabilized cells, we show that SMN import depends on the presence of Sm snRNPs. Conversely, import of labeled U1 snRNPs was SMN complex dependent. Thus, import of SMN and U snRNPs are coupled in vitro. Furthermore, we identify nuclear import defects in SMA patient-derived SMN mutants, uncovering a potential mechanism for SMN dysfunction.
منابع مشابه
Essential role for the tudor domain of SMN in spliceosomal U snRNP assembly: implications for spinal muscular atrophy.
Spinal muscular atrophy (SMA) is a neurodegenerative disease of spinal motor neurons caused by reduced levels of functional survival of motor neurons (SMN) protein. SMN is part of a macromolecular complex that contains the SMN-interacting protein 1 (SIP1) and spliceosomal Sm proteins. Although it is clear that SIP1 as a component of this complex is essential for spliceosomal uridine-rich small ...
متن کاملThe SMN complex is associated with snRNPs throughout their cytoplasmic assembly pathway.
The common neurodegenerative disease spinal muscular atrophy is caused by reduced levels of the survival of motor neurons (SMN) protein. SMN associates with several proteins (Gemin2 to Gemin6) to form a large complex which is found both in the cytoplasm and in the nucleus. The SMN complex functions in the assembly and metabolism of several RNPs, including spliceosomal snRNPs. The snRNP core ass...
متن کاملThe Spinal Muscular Atrophy Disease Gene Product, SMN: A Link between snRNP Biogenesis and the Cajal (Coiled) Body
The spliceosomal snRNAs U1, U2, U4, and U5 are synthesized in the nucleus, exported to the cytoplasm to assemble with Sm proteins, and reimported to the nucleus as ribonucleoprotein particles. Recently, two novel proteins involved in biogenesis of small nuclear ribonucleoproteins (snRNPs) were identified, the Spinal muscular atrophy disease gene product (SMN) and its associated protein SIP1. It...
متن کاملCoilin forms the bridge between Cajal bodies and SMN, the spinal muscular atrophy protein.
Spinal muscular atrophy (SMA) is a genetic disorder caused by mutations in the human survival of motor neuron 1 gene, SMN1. SMN protein is part of a large complex that is required for biogenesis of various small nuclear ribonucleoproteins (snRNPs). Here, we report that SMN interacts directly with the Cajal body signature protein, coilin, and that this interaction mediates recruitment of the SMN...
متن کاملThe Spinal Muscular Atrophy Disease Gene Product, Smn
The spliceosomal snRNAs U1, U2, U4, and U5 are synthesized in the nucleus, exported to the cytoplasm to assemble with Sm proteins, and reimported to the nucleus as ribonucleoprotein particles. Recently, two novel proteins involved in biogenesis of small nuclear ribonucleoproteins (snRNPs) were identified, the Spinal muscular atrophy disease gene product (SMN) and its associated protein SIP1. It...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cell
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2004